
Hybrid Verification of an Interface for an Automatic

Landing1

Meeko Oishi, Ian Mitchell, Alexandre Bayen, Claire Tomlin

Hybrid Systems Lab, Stanford University, Stanford, CA

moishi,imitchell,bayen,tomlin@stanford.edu

Asaf Degani

NASA Ames Research Center, Moffett Field, CA

adegani@mail.arc.nasa.gov

Abstract

Modern commercial aircraft have extensive automation
which helps the pilot by performing computations, ob-
taining data, and completing procedural tasks. The
pilot display must contain enough information so that
the pilot can correctly predict the aircraft’s behavior,
while not overloading the pilot with unnecessary in-
formation. Human-automation interaction is currently
evaluated through extensive simulation. In this pa-
per, using both hybrid and discrete-event system tech-
niques, we show how one could mathematically verify
that an interface contains enough information for the
pilot to safely and unambiguously complete a desired
maneuver. We first develop a nonlinear, hybrid model
for the longitudinal dynamics of a large civil jet air-
craft in an autoland/go-around maneuver. We find the
largest controlled subset of the aircraft’s flight envelope
for which we can guarantee both safe landing and safe
go-around. We abstract a discrete procedural model
using this result, and verify a discrete formulation of
the pilot display against it. An interface which fails
this verification could result in nondeterministic or un-
predictable behavior from the pilot’s point of view.

1 Introduction

One of the key enabling technologies for increased au-
tomation in human-machine systems is verification,
which allows for heightened confidence that the sys-
tem will perform as desired. To verify system safety,
the safety specification is first represented as a desired

1Research supported by a National Science Foundation Grad-
uate Research Fellowship, by DARPA under the Software En-
abled Control Program (AFRL contract F33615-99-C-3014),
by the DoD Multidisciplinary University Research Initiative
(MURI) program administered by the Office of Naval Research
under Grant N00014-00-1-0637, and by Grant NCC2-798 from
NASA Ames Research Center to the San Jose State University
Foundation, as part of NASA’s base research and technology ef-
fort, human-automation theory sub-element (RTOP 548-40-12).

subset of the state space in which the system should
remain. The process of verifying safety then involves
computing the subset of the state space which is back-
wards reachable from this “safe set” of states; if this
backwards reachable set intersects any states outside
the desired region, then the system is deemed unsafe.
We can restrict system behavior by pruning away sys-
tem trajectories which lead to unsafe states, to synthe-
size a controller which, if enforced, guarantees safety.

In the past several years, a method [1] and a numerical
tool [2, 3] have been developed for verifying the safety
of hybrid systems. Previous work, for example [4], has
focused on applications of hybrid system theory to fully
automated systems, assuming that the controller itself
is an automaton. Here we consider the problem of con-
trolling semi-automated systems, in which the automa-
ton and a human controller share authority over the
control of the system [5]. In particular, we consider
the problem of verification of an interface between a
semi-automated hybrid system and a human controller,
and we pose the question: Is the information displayed
to the human controller about the hybrid system evolu-
tion sufficient for the human controller to act in such
a way that the system remains safe? We consider this
problem within the framework of an example: the au-
tomatic landing system (autoland) of a large civil jet
airliner.

The autoland system of modern aircraft is one of the
most safety-critical components, and is subject to strin-
gent certification criteria [6]. Modeling the aircraft’s
behavior, which incorporates logic from the autopilot
as well as inherently complicated aircraft dynamics, re-
sults in a high-dimensional hybrid system with many
continuous and discrete states. Most of the informa-
tion is abstracted away, so that only a subset of this
information is displayed to the pilot. Here, we are in-
terested in verifying that the cockpit interface provides
the pilot with enough information so that the pilot can
safely land or safely go-around.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2002 2. REPORT TYPE

3. DATES COVERED
 00-00-2002 to 00-00-2002

4. TITLE AND SUBTITLE
Hybrid Verification of an Interface for an Automatic Landing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Stanford University ,Department of Aeronautics and
Astronautics,Hybrid System Laboratory,Stanford,CA,94305

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
In the Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas,CA, 10-13 Dec 2002

14. ABSTRACT
Modern commercial aircraft have extensive automation which helps the pilot by performing computations,
obtaining data, and completing procedural tasks. The pilot display must contain enough information so
that the pilot can correctly predict the aircraft’s behavior, while not overloading the pilot with unnecessary
information. Human-automation interaction is currently evaluated through extensive simulation. In this
paper, using both hybrid and discrete-event system techniques, we show how one could mathematically
verify that an interface contains enough information for the pilot to safely and unambiguously complete a
desired maneuver. We first develop a nonlinear, hybrid model for the longitudinal dynamics of a large civil
jet aircraft in an autoland/go-around maneuver. We find the largest controlled subset of the aircraft’s
flight envelope for which we can guarantee both safe landing and safe go-around. We abstract a discrete
procedural model using this result, and verify a discrete formulation of the pilot display against it. An
interface which fails this verification could result in nondeterministic or unpredictable behavior from the
pilot’s point of view.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Rollout

Flare

Flaps-20

1000’

50’

glideslope signal

Flaps-30

Flaps-25

Glideslope capture

Figure 1: Typical landing scenario.

The pilot’s “user model” of the autoland system, based
on the pilot’s display, manuals, training, and personal
experience, is necessarily different from the complete
aircraft “truth model” [7]. Discrepancies between these
models can result in mode confusion, a potentially un-
safe situation in which the system does not behave as
the pilot anticipates [5, 8, 9]. Although the human
factors community has historically dominated research
on human-automation interaction [9, 10, 11, 12], there
have recently been efforts by the formal methods com-
munity [7, 13, 14, 15, 16] as well as system and control
communities [17] to address these safety-critical prob-
lems. We build our methodology based on [7], in which
user-interfaces are verified for a given task. In [7] the
hybrid plant model is represented as an abstracted dis-
crete system in which the system dynamics are mod-
eled as plant-triggered (dynamic) transitions. It is not
shown there how the discrete representation with its
dynamic transitions are derived. In the present work,
we represent the plant model as an explicit hybrid sys-
tem and show how, with the aid of a control component,
the detailed transformation into the equivalent discrete
representation is performed.

In this paper, we first develop a model of longitudi-
nal aircraft dynamics in high-lift configurations used
during a landing/go-around procedure. Using a com-
putational tool for hybrid systems, we find the largest
controllable set for which we can guarantee the aircraft
can both safely land and safely go-around. We ap-
ply the control law synthesized from this computation,
and formulate a new, safe hybrid automaton. From
this automaton, we abstract a discrete event system
which represents operation in the regions which result
in safe landing or go-around maneuvers. We formu-
late the interface as a discrete event system, as well.
Using the verification techniques described in [7], we
verify the interface against the abstracted procedural
model. Lastly, we discuss implications of our results
and directions for future work.

2 Problem Description

In a typical autoland maneuver (Figure 1), the aircraft
descends towards the glideslope, an inertial beam which
the aircraft can track. With the landing gear down,
the pilot sets the flaps at Flaps-20, the first high-lift
configuration in the landing sequence. After capturing
the glideslope signal, the pilot increases flap deflection,
stepping through both Flaps-25 and Flaps-30 by the
time the aircraft reaches 1000’ altitude. Near 50’, the
aircraft leaves the glideslope and begins a flare maneu-
ver, which allows the aircraft to touchdown smoothly
on the runway with an appropriate descent rate.

If for any reason the pilot or air traffic controller deems
the landing unacceptable (debris on the runway, a po-
tential conflict with another aircraft, or severe wind
gusts, for example), the pilot must initiate a go-around
maneuver. A go-around can be initiated anytime after
the glideslope has been captured and before the aircraft
touches down. Pushing the go-around button engages a
sequence of events designed to make the aircraft climb
as quickly as possible to a dialed-in missed-approach
altitude which the pilot usually sets to 2500’.

2.1 Aerodynamic Characteristics

The phases of landing and go-around correspond to
fundamentally different operating conditions of the air-
craft. We model the nonlinear longitudinal dynamics
of a large civil jet aircraft by ẋ = fi(x, u), in which the
state x = [V, γ, h] ∈ R

3 includes the aircraft’s speed V ,
flightpath angle γ, and altitude h (see [18]):

mV̇

mV γ̇

ḣ

 =

−D(α, V) + T cosα−mg sin γ

L(α, V) + T sin α−mg cos γ

V sin γ

(1)
We assume the control input u = [T, α], with air-
craft thrust T and angle of attack α. The aircraft
has mass m = 190000 kg, pitch θ = α + γ, and
gravitational acceleration is g = 9.81 m/s2. The air-
craft’s lift L(α, V) = 1

2ρV 2SCL(α) and drag D(α, V) =
1
2ρV 2SCD(α) depend on air density ρ = 1.225 kg/m3,
wing surface area S = 427.80 m2, and the coefficients
of lift and drag, CL(α) = CL0

+ CLα
α and CD(α) =

CD0
+ KC2

L(α). The constants CL0
, CD0

, and K were
determined for the particular combinations of flap set-
tings and landing gear in an autoland/go-around sce-
nario [18, 19, 20, 21, 22] (Table 1). CLα

= 5.105 in all
modes.

2.2 Procedural Automaton

The discrete modes of our hybrid system result from
the combination of aircraft dynamics and autopilot
modes. We formulate a hybrid procedural model based
on landing/go-around procedures a pilot is trained to
follow. We focus on a small part of the autoland pro-
cedure, beginning with the flare maneuver.

i CL0
CD0

K Flaps Landing
Setting Gear

1 0.4225 0.024847 0.04831 Flaps-20 Down
2 0.7043 0.025151 0.04831 Flaps-25 Down
3 0.8212 0.025455 0.04831 Flaps-30 Down
4 0.4225 0.019704 0.04589 Flaps-20 Up
5 0.7043 0.020009 0.04589 Flaps-25 Up
6 0.8212 0.020313 0.04589 Flaps-30 Up

Table 1: Aerodynamic constants for autoland modes in-
dexed by ẋ = fi(x, u).

Flare

ẋ = f3(x, u)

T = 0

Rollout

ẋ = 0
T = 0

h = 0

Toga-Max Toga-Up Altitude

T ∈ [0, Tmax]T ∈ [0, Tmax]T = Tmax

ẋ = f1(x, u) ẋ = f4(x, u) ẋ = f1(x, u)

ḣ ≥ 0 h ≥ halt

σTOGA

HF

HT

Figure 2: Hybrid procedural automaton Hprocedure.

The initial state of our procedural model Hprocedure

(Figure 2) is Flare, with flaps at Flaps-30 and thrust
fixed at idle. As instructed, when a pilot initiates a go-
around maneuver (often called a “TOGA” due to the
“Take-Off/Go-Around” indicator on the pilot controls
and display), the pilot changes the flaps to Flaps-20 and
the autothrottle forces the thrust to Tmax (Toga-Max).
When the aircraft obtains a positive rate of climb, the
pilot raises the landing gear, and the autothrottle al-
lows T ∈ [0, Tmax] (Toga-Up). The aircraft continues
to climb to the missed approach altitude halt, then
switches into an altitude-holding mode, Altitude (with
the landing gear down). If a go-around does not occur,
the aircraft switches to Rollout when it lands. (We do
not model the aircraft’s behavior after touchdown.)

Although go-arounds are unpredictable and may be re-
quired at any time during the autoland prior to touch-
down, σTOGA is a controlled transition because the pi-
lot must initiate the go-around for it to occur. Cer-
tain events occur simultaneously: changing the flaps
to Flaps-30 and event σTOGA, raising the landing gear
and ḣ ≥ 0, and lowering the landing gear and h ≥ halt.

2.3 State and Input Bounds

Each mode in the procedural automaton is subject to
state and input bounds, due to constraints arising from
aircraft aerodynamics and desired aircraft behavior.
These bounds, shown in Table 2, form the boundary
of the flight envelope W0. Bounds on V and α are de-
termined by stall speeds and structural limitations for
each flap setting [22]. Bounds on γ and T are deter-

Mode V [m/s] γ [degrees] α [degrees]

Flare [55.57, 87.46] [−6.0◦, 0.0◦] [−9◦, 15◦]
Toga-Max [63.79, 97.74] [−6.0◦, 0.0◦] [−8◦, 12◦]
Toga-Up [63.79, 97.74] [0.0◦, 13.3◦] [−8◦, 12◦]
Altitude [63.79, 97.74] [−0.7◦, 0.7◦] [−8◦, 12◦]

Table 2: State bounds for autoland modes of Hprocedure.

mined by the desired maneuver [23]. Additionally, at
touchdown, θ ∈ [0◦, 12.9◦] to prevent a tail strike, and
ḣ ≥ −1.829 m/s to prevent damage to the landing gear.

3 Safety Analysis

The state bounds just described define flight envelopes
for each of the discrete modes. These envelopes are
not necessarily controlled invariant. Thus, we need to
determine what subsets of these envelopes are actu-
ally controllable given the input authority available to
the autopilot. Because the nonlinear dynamics of our
model (1) make analytic determination of the control-
lable subsets impossible, we employ a previously de-
veloped computational algorithm for finding controlled
invariant sets for this problem [3].

3.1 Computing Reachable Sets

For each discrete mode of the autoland system, we de-
fine the target set as the region outside the flight en-
velope W0, denoted (W0)

c for the complement of W0.
Given some dynamically evolving system and some tar-
get set, we define the backward reachable set Wc(t) as
the set of all system states which reach the target set
in time t. The autopilot inputs α and T try to drive
the state away from the target set, to keep the aircraft
within W0.

Computing the reachable set in a discrete system with
a finite number of states—and hence a finite number
of possible transitions—is a straightforward but possi-
bly time consuming task of enumerating all the states
which have a path to the target set. Computing reach-
able sets for a continuous system is a much more dif-
ficult undertaking; for example, how should the un-
countably many states in any nontrivial target set be
represented?

An algorithm has been developed for computing the
reachable sets of continuous nonlinear systems, based
on a time dependent Hamilton-Jacobi (HJ) partial dif-
ferential equation (PDE) [2, 3]. For ẋ = f(x, u), x ∈ X,
input u ∈ U tries to keep the system from reaching the
target set. Define a continuous function J0 : X → R

such that (W0)
c = {x ∈ X|J0(x) ≤ 0}. As shown in [2],

by solving the terminal value HJ PDE

DtJ(x, t) + min[0, H(x, DxJ(x, t))] = 0 for t < 0;

J(x, 0) = J0(x) for t = 0;
(2)

where H(x, p) = maxu∈U pT f(x, u), for the function J :
X× (−∞, 0]→ R, we obtain an implicit representation
of the reachable set Wc(t) = {x ∈ X|J(x,−t) ≤ 0}.
The state-dependent control synthesized from this cal-
culation is u∗(x) = argmaxu∈U pT f(x, u).

Analytically solving (2) for a general J0(x) and f(x, u)
is likely to be impossible. Computational algorithms
are complicated by the fact that for even smooth J0(x)
and f(x, u), the solution J(x, t) can develop discontinu-
ities in its derivatives after finite time, and hence cease
to solve (2) in a classical sense. The appropriate weak
solution is the viscosity solution [24], and level set algo-
rithms [25] are numerical techniques developed to com-
pute such solutions. A set of high resolution schemes
[26] have been designed and implemented [3] to com-
pute J(x, t), and hence the boundary of the reachable
set Wc(t), very accurately.

3.2 Computing Controllable Flight Envelopes

In any given mode of Hprocedure, the aircraft should
remain within its flight envelope W0. To determine
the maximal controllable subset W of W0, we run a
reachable set computation. The reachable set typically
converges to a fixed point: Wc(t) → Wc as t → +∞.
We call W the safe flight envelope. Yet the full autopi-
lot system contains transitions between modes, and so
we cannot examine any mode in isolation.

We separate the hybrid procedural model across the
user-controlled switch σTOGA into two hybrid subsys-
tems, HF and HT, shown in Figure 2. Computation-
ally, automatic transitions are smoothly accomplished
by concatenating modes across the switch, so that the
change in dynamics across the switching surface is mod-
eled as another nonlinearity in the dynamics. Addition-
ally, we assume in HT that if the aircraft leaves the
top of the computational domain (h = 20 m) without
exceeding its flight envelope, it is capable of reaching
Altitude mode, which we consider to be completely safe.

The initial flight envelopes (WF)0 and (WT)0 are deter-
mined by state bounds on each mode given in Table 2.
We perform the reachability computation on HF and
HT to obtain the safe flight envelopesWF andWT . Fig-
ure 3 shows WF, and Figure 4 shows WT in Toga-Up

and Toga-Max modes. (Note that the boundary of WF

along γ = 0 corresponds with the transition boundary
of WT between Toga-Up and Toga-Max, ḣ = 0.)

Figure 5 shows the continuous region WF ∩ WT from
which we can guarantee both a safe landing and a safe
go-around. Notice that this set is smaller than WF, the

Figure 3: Safe region WF ; the outer box is (WF)0.

Figure 4: Safe region WT : the outer box is (WT)0.

region from which a safe landing is possible: the pilot
is further restricted in executing a go-around. There
are states from which a safe landing is possible, but a
safe go-around is not.

4 Interface Verification

A general verification technique for analyzing interfaces
has been sought for many years. The need was moti-
vated by serious incidents and accidents, involving hu-
man interaction with complex automated systems (e.g.,
cockpit automation). Recently, a theory, methodol-
ogy, and a detailed verification procedure was devel-
oped by researchers at NASA [7, 16]. The methodol-
ogy considers four elements: the machine model, user
model, interface model, and the task specification (e.g.,
safe/unsafe, multiple modes). In this section we use the
methodology of [7] in the context of this hybrid system
example.

In most commercial aircraft, the low-level control is
performed by the autopilot, and the pilot anticipates
system behavior by understanding the behavior of each
autopilot mode. We assume an automated controller
enforces u = u∗(x) within each hybrid subsystem. By
doing so, we mimic the supervisory role pilots have in

Figure 5: The solid shape is the safe region WF ∩ WT ,
from which safe landing and safe go-around is
possible. The meshes depict WF and WT.

Toga

Unsafe

Altitude

Rollout

Specification Classes:

Flare

Flare

Rollout

AltitudeTo/Ga
σTOGA

σ1

σ3

Figure 6: Ginterface for autoland/go-around maneuver.
Event σ1 occurs when h = 0, σ3 when h ≥ halt.

highly automated aircraft, including the option not to
enforce a recommended switch.

The pilot activates various knobs, buttons, and toggles
to change the system’s mode. Interaction between the
pilot’s actions and the system’s modes are encapsulated
by a finite-state machine representation of the inter-
face Ginterface = (Qinterface, Σinterface, δinterface). Modes
Qinterface are determined by the indications on the dis-
play; events Σinterface are determined by internal tran-
sitions in the system, or by the pilot’s actions. The
transition function is δinterface. The interface for an
autoland/go-around is shown in Figure 6.

To compare the interface against the procedural
model, we implement the controller for safety u∗(x) in
Hprocedure and create a discrete abstraction G∗

procedure

based on the resultant closed-loop hybrid system. We
partition the state-space in each mode into the interior,
boundary, and complement of the safe flight envelope in
that particular mode. Across the user-controlled switch
σTOGA, we partition the state space according to the in-
tersection of WF in Flare and WT in Toga-Up, resulting
in nine regions in each mode. Across all other switches
in HF and HT, we enforce safety by implementing u∗(x)
so that trajectories which begin inside or on the bound-

ary of the safe flight envelope in one mode will remain
within or on the boundary of the safe flight envelope
in all other modes in that hybrid subsystem. Only
across user-controlled switches can the system become
unsafe, because we can make no guarantees about the
user’s actions. G∗

procedure has modes Q∗
procedure, events

Σ∗
procedure, and transition function δ∗procedure.

We verify the correspondence between Ginterface and
G∗

procedure according to the verification methodology in
[7]. We associate each mode in Qinterface and Q∗

procedure

to a certain specification class [7]. Specification classes
are a way of indicating a type of behavior or quality
of the system – for example, modes which the system
should avoid belong to a specification class Unsafe.

The interface and the abstracted procedural model are
related through their events: events in Σ∗

procedure map
to events in Σinterface. We define the map through
Σ∗

procedure
π
−→ Σinterface, by examining the events in

each set and creating a correspondence between them
by hand [7]. Events in Σ∗

procedure which do not have a
corresponding transition in Σinterface map to the empty
event ε [7].

The two systems are verified through the creation of
a composition, defined by the map π. The composi-
tion Gcomposition allows us to keep track of the modes
and events in both systems (Ginterface and G∗

procedure)
at the same time. The process of creating the composi-
tion uncovers possible problems: error states, blocking
states, and augmented states [7].

The composition begins with each initial state in each
system for a given specification class, and is repeated
for each pair of initial states. If each event α in
G∗

procedure such that p
α
−→ p′ has a corresponding event

π(α) in Ginterface such that q
π(α)
−→ q′, then the composite

state (p, q)
π(α)
−→ (p′, q′) exists. If p and q have the same

specification class, and p′ and q′ have the same speci-
fication class, then the composition continues through-
out the model. An error state exists when p′ and q′

have different specification classes [7].

Other problems occur when the composition fails. If
for a transition α ∈ Σ∗

procedure from p
α
−→ p′ there is

no corresponding transition q
π(α)
−→ q′, then the compo-

sition has reached a blocking state [7]. (The interface
blocks a transition which occurs in the abstracted pro-
cedural model.) Alternatively, if there is a transition

π(α) ∈ Σinterface from q
π(α)
−→ q′ but no corresponding

transition α ∈ Σ∗
procedure from p

α
−→ p′, then the com-

position has reached an augmented state [7]. (The in-
terface indicates a transition which is not possible in
the abstracted procedural model.)

Unsafe

Flare Toga

Rollout

Altitude

Specification Classes:

Flare To/Ga

σ1

Rollout

AltitudeTo/Ga

σTOGA

σTOGA
Altitude

σ3

σ3

Figure 7: Nondeterministic behavior from the pilot’s
point of view.

If the composition fails (due to blocking or augmented
states), or if the composition contains error states (due
to mismatched specification classes) then the interface
is not an adequate representation of the procedural
model [7].

Following this process for the autoland example, we
find that the composition Gcomposition contains error
states. For example, if the pilot initiates a go-around
when the aircraft is in W◦

F∩W
◦
T in Flare, Gcomposition

reveals specification classes (Flare,Flare)
σTOGA−→

(Toga, Toga). However, if the pilot initiates a
go-around from W◦

F ∩ W c
T in Flare, Gcomposition

reveals specification classes (Flare, Flare)
σTOGA−→

(Unsafe,Toga). From the pilot’s point of view, error
states appear as nondeterminism: the aircraft some-
times behaves as the pilots expects, but sometimes does
not, as shown in Figure 7.

5 Implications and Conclusion

There is an ongoing debate in aviation, space, and other
safety-critical industries about the role of the operator
and the extent to which automation can and should
be used. This debate has been fueled by incidents and
accidents in which pilots were surprised about the be-
havior of the automation. While the debate will con-
tinue, it is clear that some of the problems in human-
automation interaction stem from design problems. In-
terface verification methods are critical for identifying
design problems early on in the design phase. Cur-
rent efforts at NASA are aimed at developing methods
for extracting the machine, interface, and user-models
from Java code and then applying the interface verifi-
cation method of [7] to identify error states.

Verification within a hybrid framework allows us to ac-

count for the inherently complicated dynamics under-
lying the simple, discrete representations displayed to
the pilot. In this example, in order to safely supervise
the system, the pilot must have enough information to
know before entering a go-around maneuver whether or
not the aircraft will remain safe.

The interface verification methodology begins with a
procedural model, a hybrid system which incorporates
discrete mode logic as well as nonlinear continuous dy-
namics. The hybrid safety computation provides us
with continuous control restrictions, which, if enforced,
guarantee that the system will always remain safe. This
guarantee holds to within the accuracy of our model.
We abstract a discrete event system from this hybrid
system with safety restrictions. To do so, we partition
the continuous states of the hybrid system with safety
restrictions according to their location in safe or unsafe
regions in each mode. This abstraction, along with the
formulation of the interface model as a discrete event
system, allows us to use existing interface verification
techniques [7]. We compare the discrete interface and
procedural models by analyzing their composition for
error, blocking, and augmented states, which result in
confusing and unpredictable behavior from the pilot’s
point of view.

The methodology presented here also extends to sys-
tems with disturbances, such as wind or an engine fail-
ure. While verification tools can aid design, we also
hope to contribute directly to the design problem (as
in [27]), within a hybrid framework.

6 Acknowledgements

Thanks to Michael Heymann, David Austin, Randall
Mumaw, and Charles Hynes for their invaluable assis-
tance and input.

References

[1] C. Tomlin, J. Lygeros, and S. Sastry, “A game
theoretic approach to controller design for hybrid sys-
tems,” Proceedings of the IEEE, vol. 88, no. 7, pp. 949–
970, 2000.

[2] I. Mitchell, A. Bayen, and C. Tomlin, “Validat-
ing a Hamilton-Jacobi approximation to hybrid sys-
tem reachable sets,” in Hybrid Systems: Computation
and Control (M. D. Benedetto and A. Sangiovanni-
Vincentelli, eds.), LNCS 2034, pp. 418–432, Springer
Verlag, March 2001.

[3] I. Mitchell, A. M. Bayen, and C. J. Tomlin,
“Computing reachable sets for continuous dynamic
games using level set methods,” IEEE Transactions on
Automatic Control. Submitted, December 2001.

[4] M. Oishi, C. Tomlin, V. Gopal, and D. Godbole,
“Addressing multiobjective control: Safety and perfor-
mance through constrained optimization,” in Hybrid
Systems: Computation and Control (M. D. Benedetto
and A. Sangiovanni-Vincentelli, eds.), LNCS 2034,
pp. 459–472, Springer Verlag, March 2001.

[5] A. Degani, M. Shafto, and A. Kirlik, “Modes in
human-machine systems: Constructs, representation,
and classification,” International Journal of Aviation
Psychology, vol. 9, no. 2, pp. 125–138, 1999.

[6] Federal Aviation Administration, “Criteria for
approval of Category III weather minima for takeoff,
landing, and rollout,” Advisory Circular 120-28D, U.S.
Department of Transportation, July 1999.

[7] A. Degani and M. Heymann, “Formal verifica-
tion of human-automation interaction,” Human Fac-
tors, vol. 44, no. 1, pp. 28–43, 2002.

[8] N. Leveson and E. Palmer, “Designing automa-
tion to reduce operator errors,” in In the Proceedings
of the IEEE Conference on Systems, Man, and Cyber-
netics, (Orlando, FL), pp. 1144–1150, 1997.

[9] N. Sarter, D. Woods, and C. Billings, “Automa-
tion surprises,” in Handbook of Human Factors and Er-
gonomics, pp. 1295–1327, NY: John Wiley and Sons,
Inc., 1999.

[10] R. Parasuraman, T. Sheridan, and C. Wickens,
“A model for types and levels of human interaction
with automation,” IEEE Transactions on Systems,
Man, and Cybernetics Part A: Systems and Humans,
vol. 30, May 2000.

[11] C. Billings, Aviation Automation: The Search for
a Human-Centered Approach. Hillsdale, NJ: Erlbaum,
1997.

[12] E. Wiener, “The human factors of advanced tech-
nology (“glass cockpit”) transport aircraft,” NASA
Contractor Report 177528, NASA Ames Research Cen-
ter, Moffett Field, CA, 1989.

[13] J. Rushby, “Using model checking to help dis-
cover mode confusions and other automation sur-
prises,” in Proceedings of the Workshop on Human Er-
ror, Safety, and System Development (HESSD), (Bel-
gium), June 1999.

[14] R. Butler, S. Miller, J. Potts, and V. Carreno,
“A formal methods approach to the analysis of mode
confusion,” in Proceedings of the AIAA/IEEE Digital
Avionics Systems Conference, pp. C41/1–C41/8, 1998.

[15] J. Crow, D. Javaux, and J. Rushby, “Models
and mechanized methods that integrate human fac-
tors into automation design,” in International Confer-
ence on Human-Computer Interaction in Aeronautics,
(Toulouse, France), September 2000.

[16] A. Degani, M. Heymann, G. Meyer, and
M. Shafto, “Some formal aspects of human-automation
interaction,” NASA Technical Memorandum 209600,

NASA Ames Research Center, Moffett Field, CA, April
2000.

[17] S. Vakil, A. Midkiff, T. Vaneck, and R. Hansman,
“Mode awareness in advanced autoflight systems,” in
Proceedings of the 6th IFAC/IFIP/IFORS/IEA Sym-
posium on Analysis, Design, and Evaluation of Man-
Machine Systems, (Cambridge, MA), 1995.

[18] A. Bayen and C. Tomlin, “Nonlinear hybrid au-
tomaton model for aircraft landing,” SUDAAR 737,
Dept. of Aeronautics and Astronautics, Stanford Uni-
versity, Stanford, CA, 2001.

[19] S. Rogers, K. Roth, H. Cao, J. Slotnick, M. Whit-
lock, S. Nash, and M. Baker, “Computation of viscous
flow for a Boeing 777 aircraft in landing configuration,”
in AIAA Conference Proceedings, no. 2000-4221, Octo-
ber 1992.

[20] J. Roskam and C.-T. Lan, Airplane Aerodynam-
ics and Performance. Lawrence, Kansas: Design, Anal-
ysis, and Research Corporation, 1997.

[21] A. Flaig and R. Hilbig, “High-lift design for large
civil aircraft,” in AGARD Conference Proceedings 515,
(France), October 1992.

[22] L. Jenkinson, P. Simpkin, and D. Rhodes, Civil
Jet Aircraft Design. Reston, VA: American Insti-
tute of Aeronautics and Astronautics, Inc., 1999.
http://www.bh.com/companions/aerodata.

[23] T. Lambregts, “Automatic flight control: Con-
cepts and methods.” FAA National Resource Special-
ist, Advanced Controls, 1995.

[24] M. G. Crandall, L. C. Evans, and P.-L. Lions,
“Some properties of viscosity solutions of Hamilton-
Jacobi equations,” Transactions of the American Math-
ematical Society, vol. 282, no. 2, pp. 487–502, 1984.

[25] S. Osher and J. A. Sethian, “Fronts propagating
with curvature-dependent speed: Algorithms based on
Hamilton-Jacobi formulations,” Journal of Computa-
tional Physics, vol. 79, pp. 12–49, 1988.

[26] S. Osher and R. Fedkiw, The Level Set Method
and Dynamic Implicit Surfaces. Springer-Verlag, 2002.

[27] M. Heymann and A. Degani, “On abstractions
and simplifications in the design of human-automation
interfaces,” NASA Technical Memorandum 211397,
NASA Ames Research Center, Moffett Field, CA, 2002.

